Alumina-supported Catalysts for the Selective Reduction of Nitric Oxide by Propene

Tatsuo MIYADERA* and Kiyohide YOSHIDA†

National Institute for Resources and Environment, Onogawa, Tsukuba, Ibaraki 305,

† Riken Corporation, Suehiro, Kumagaya, Saitama 360

The effect of water vapor and SO_2 on the selective reduction of nitric oxide over alumina-supported Ag, In, Ga, Sn, and Zn catalysts has been investigated. Water vapor and SO_2 had large effect on the reactivity of propene and on the reduction of NO over those catalysts.

Selective reduction of NOx by hydrocarbons over copper-exchanged ZSM-5 and other cation-exchanged zeolites have been reported. However, the activities of those catalysts decreased in the presence of water vapor or at high temperatures. From a practical point of view, it is important to develop catalysts which are heat-resistant and active in the presence of water vapor and SO₂. Alumina-supported catalysts were also found to be effective for selective reduction of NOx. Although alumina base catalysts have lower activities, they are expected to be more heat-resistant than the ones with zeolite. Alumina base catalysts are also subject to the interference of water. The authors of this paper investigated the effect of water vapor and SO₂ on the selective reduction of NO over alumina-supported Ag, In, Ga, Zn, and Sn catalysts which showed high activities in the absence of water and SO₂.

An alumina-supported silver catalyst was prepared according to the previously outlined procedure. Other catalysts were prepared by impregnating pellet type alumina (Catalysts and Chemicals Co.) with aqueous solutions of metal nitrate (In, Ga, Zn) or ethanol solution of tin chloride. The alumina-impregnated tin chloride which was dried at 200 $^{\circ}$ C in a dry nitrogen stream was converted to tin hydroxide by treating with an aqueous solution of ammonia at a room temperature. After being dried at 70 $^{\circ}$ C, the alumina-supported In, Ga, Zn, and Sn catalysts were calcined at temperatures in a range between 110 and 550 $^{\circ}$ C in an air stream.

Activities of the catalysts were measured with a fixed-bed flow reactor at a constant space velocity of 6400/h. Inlet gas composition was 500 ppm NO, 500 ppm C_3H_6 , 0 or 200 ppm SO_2 , 0-10% O_2 , 10% CO_2 , balance N_2 (dry basis) plus 0 or 10% H_2O . Water was injected into the gas stream and vaporized before the reactor. Water vapor in the post-catalyst stream was removed by two condensers. The concentrations of NO and NOx (NO + NO₂) were measured with a chemiluminescence-based NO/NOx analyzer. Nitric oxide was partially oxidized to nitrogen dioxide over the catalysts and a small part of the NO_2 was trapped out while passing through the condensers. The concentration of outlet NOx was corrected by adding the lost NO_2 which was estimated according to the

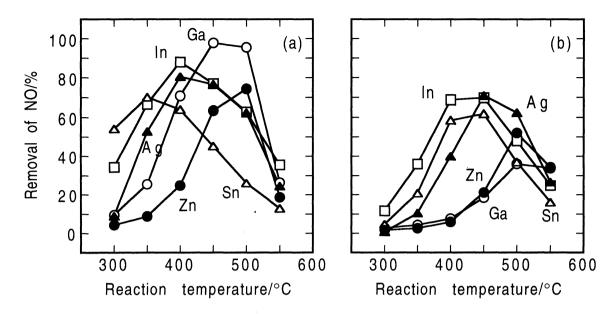


Fig. 1. Effect of water vapor on the reduction of NO over alumina-supported catalysts. Reaction conditions: NO 500 ppm, C_3H_6 500 ppm, C_2 10%, balance N₂, H₂O 0%(a) 10%(b); SV 6400/h.

way described in the previous work. The percent of NO removal(dry basis) was defined as 100*(NO in - corrected NOx out)/(NO in). In another experiment, helium-balanced gas mixture (1021 ppm NO, 667 ppm C_3H_6 , 0 or 200 ppm SO_2 , 10% O_2 (dry basis) plus 0% or 10% H_2O) was used as a reactant and the post-catalyst sample was analyzed by gas chromatography with columns: molecular sieve 5A (for N_2 and CO), Porapak Q (for CO_2 and N_2O), and silica gel (for C_3H_6). More than 90% of the reacted NOx (measured with NO/NOx analyzer) was detected as N_2 and there was no formation of N_2O . Therefore, it seems that there is no problem in estimating the NOx reduction activity of the catalysts on measuring NOx with NO/NOx analyzer.

Figure 1a shows the NO removal activities of alumina-supported catalysts (2.0 wt% metal loading) in the absence of water vapor and sulfur dioxide. The order of catalytic activities was Ga(98%, maximum NO removal) > In(88%) > Ag(81%) > Zn(74%) > Sn(70%). In the absence of water, the Ga/Al_2O_3 catalyst showed extremely high activity as well as Ga-exchanged zeolites. However, the activities of those catalysts were decreased by water as can be seen in Fig. 1b. The order of catalytic activities in the presence of 10% water was Ag(71%), In(70%) > Sn(62%) > Zn(52%) > Ga(36%). The activity of Ga/Al_2O_3 was significantly decreased by water. In order to investigate the effect of water on the reduction of NO and the oxidation of propene, the conversion rates of NO to N_2 and propene to COx ($CO + CO_2$) in $NO - C_3H_6 - O_2$ - $He - (H_2O)$ system were measured at temperatures where NO were removed effectively. The result is shown in Table 1. The conversion of propene on every catalysts decreased by the addition of water vapor over all the temperature range. On the other hand, the selectivities of C_3H_6 for N_2 formation (defined as formed N_2*2 /consumed C_3H_6) over all catalysts except Ga/Al_2O_3 increased in the presence of water vapor. It can be said that water vapor suppressed the undesirable C_3H_6 oxidation where C_3H_6 did not contribute to NO reduction, and hence it increased

Catalyst (2wt%)	Temp (℃)	Conv. of NO to N ₂ /%		Conv. of C ₃ H ₆ to COx/%			Selectivity for N ₂ a)			
		(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
Ag/Al ₂ 0 ₃	450	56.7	47.2	45.0	100	77.2	75.8	0.87	0.94	0.91
	400	48.4	20.3	34.5	80.5	28.0	57.0	0.92	1.11	0.93
In/Al ₂ 0 ₃	450	50.6	57.7	27.9	100	91.7	57.0	0.77	0.96	0.75
	400	55.8	52.8	15.9	94.8	64.8	23.0	0.90	1.25	1.06
Sn/Al ₂ 0 ₃	450	37.3	50.1	31.6	100	95.1	98.5	0.57	0.81	0.49
	400	52.9	44.2	30.8	100	58.3	74.7	0.81	1.16	0.63
Ga/Al ₂ 0 ₃	500	77.9	24.8	16.1	100	36.7	36.6	1.19	1.03	0.67
	450	60.5	14.5	5.9	82.2	18.8	16.6	1.13	1.18	0.54
Zn/Al ₂ 0 ₃	500	59.5	34.6	12.3	100	58.0	31.0	0.91	0.91	0.61
	450	24.0	12.9	6.6	43.9	16.2	12.9	0.84	1.22	0.78

Table 1. Activities of alumina-supported catalysts

Inlet gas composition: (1) NO 1021 ppm, C_3H_6 667 ppm, O_2 10%, balance He (2) + H_2O 10% (3) + H_2O 10%, SO_2 200 ppm; SV 6400/h.

the selectivity for N_2 formation. Alumina-supported Ag, In, and Sn catalysts exhibited higher NO reduction activities in the presence of water at 450 $^{\circ}$ C than in the absence of water; this might have been due to the large increase of selectivity for N_2 formation and small decrease in the reactivity of C_3H_6 caused by water vapor. The significant decrease of NO reduction activity of G_3/Al_2O_3 was probably due to the extreme decrease of C_3H_6 reactivity in the presence of water.

Figure 2 shows the change of NO removal activities of the alumina-supported catalysts in the presence of 200 ppm SO_2 and 10% water. The activities of Ga/Al_2O_3 and Zn/Al_2O_3 decreased significantly by SO_2 and they became the same level of alumina support in 12 h. Though the effect of SO_2 on the In/Al_2O_3 and Sn/Al_2O_3 catalysts was rather small, the activities of those catalysts decreased by 30% in 12 h. Among the

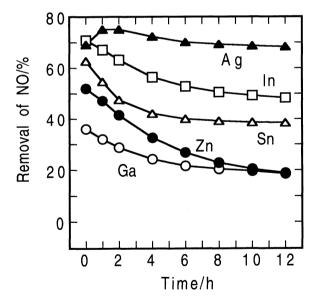


Fig. 2. Effect of SO_2 on the reduction of NO over alumina-supported catalysts. Reaction temp: Ag, In, Sn 450 °C; Ga, Zn 500 °C, SO_2 200 ppm, Other conditions are the same as in Fig. 1b.

a) defined as formed $N_2*2/consumed C_3H_6$.

tested catalysts, only Ag/Al_2O_3 showed as high NO reduction activity as in the absence of SO_2 . When the addition of SO_2 to the feed gas was stopped, the activity of Sn/Al_2O_3 was restored gradually, whereas the activities of In, Ga, and Zn/Al_2O_3 catalysts were not restored.

The conversion rates of propene and NO and the selectivities of C₃H₆ for N₂ formation over the alumina-supported catalysts (exposed to 200 ppm of SO₂ for 24 hr) in the presence of SO₂ are shown in Table 1. In the presence of SO₂ and H₂O, the conversions of C₃H₆ over In/Al₂O₃ and Zn/Al₂O₃ were extremely low, while the conversions over Sn/Al₂O₃ and Ag/Al₂O₃ were rather high. The selectivities of C₃H₆ for N₂ formation over alumina-supported Sn, Ga, and Zn were decreased significantly by the addition of SO₂ to the water containing system. It can be said that the decrease of NO reduction activity in the presence of SO₂ and H₂O was mainly due to the suppression of C₃H₆ reaction (In/Al₂O₃) or due to the decrease of selectivity for N₂ formation (Ga/Al₂O₃). The extreme decrease of the NO reduction activity of Zn/Al₂O₃ in the presence of SO₂ and H₂O seems to have been caused by the large decrease in both the reactivity of C₃H₆ and selectivity for N₂ formation. On the other hand, Ag/Al₂O₃ suffered only a small interference from SO₂ at 450 °C. In addition, the NO reduction activity of Ag/Al₂O₃ in the presence of SO₂ and H₂O was higher than in the absence of SO₂ at 400 °C; this was probably due to the large increase of reactivity of C₃H₆ and small decrease of selectivity for N₂ formation. This promoting effect of SO₂ on the NO reduction was unique to the Ag/Al₂O₃ catalyst. Though the rate of NO removal over the Ag/Al₂O₃ catalyst decreased with the increase of space velocity, it can be concluded that, among the tested catalysts, Ag/Al₂O₃ is the most promising one to be put to practical use.

References

- 1) W. Held, A. Konig, T. Richiter, and L. Puppe, SAE Paper, 900496(1990).
- M. Iwamoto, H. Yahiro, S. Shundo, Y. Yu-u, and N. Mizuno, Shokubai(Catalyst), 32, 430(1990);
 Appl. Catal., 69, L15(1991).
- 3) M. Misono and K. Kondo, Chem. Lett., 1991, 1001.
- 4) K. Yogo, S. Tanaka, M. Ihara, T. Hishiki, and E. Kikuchi, Chem. Lett., 1992, 1025.
- 5) S. Sato, H. Hosose, W. X. Zhang, H. Yahiro, N. Mizuno, M. Iwamoto, M. Kobayashi, M. Konno, T. Chikahisa, and T. Murayama, Shokubai(Catalyst), 33, 448(1991).
- 6) S. Kasahara, K. Sekizawa, and M. Kimura, 61th Annual Meeting of the Chem. Soc. Jpn., No. 3H203(1991); K. Yokota, M. Kimura, H. Doi, and K. Sekizawa, ibid., No. 3H204(1991).
- 7) H. Hamada, Y. Kintaichi, M. Sasaki and T. Ito, Appl. Catal., 75, L1(1991).
- 8) A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno and H. Ohuchi, Appl. Catal., B 2, 71(1993).
- 9) T. Miyadera and K. Yoshida, 62th Annual Meeting of the Chemical Society of Japan, No. 4D411(1991).
- H. Hamada, Y. Kintaichi, T. Yoshinari, M. Sasaki, and T. Ito, 63th Annual Meeting of the Chemical Society of Japan, No. 2C448(1992).
- 11) T. Miyadera, Appl. Catal., B 2, 199(1993).

(Received May 27, 1993)